Numerical inversion of laplace transforms using moment method 逆變換的矩方法
Therefore , research about multiscale problems of mechanics and multiscale methods of inversion are predicted according to the development tendency of these generalized solutions and numerical inversion approaches 揭示了數(shù)值反演方法的這一演化發(fā)展趨勢(shì)預(yù)示著多尺度力學(xué)問(wèn)題及其多尺度反演方法的研究。
In order to apply the research results of this paper to the optimum design of computer for cpw , the analytical closed - from of expressions is the best choice . so conformal mapping theories are used to analyze cpw ' s by this paper . the optimum programming , the numerical inversion of conformal transformation and the numerical predictor - corrector method have been utilized to calculate the characteristic parameters and field patterns of cpw ' s 為了使本論文的研究成果便于應(yīng)用于共面波導(dǎo)的計(jì)算機(jī)優(yōu)化設(shè)計(jì)中,最好方法是得到封閉的解析表達(dá)式,所以本論文采用了保角變換理論宋分析非對(duì)稱共面波導(dǎo),并且應(yīng)用了優(yōu)化計(jì)算方法、保角變換反演技術(shù)和數(shù)值預(yù)測(cè)糾正算法對(duì)各種非對(duì)稱共面波導(dǎo)的特性以及場(chǎng)結(jié)構(gòu)進(jìn)行求解。
This thesis is to recommend a important class of regularized strategies for solving inverse problems - mollifier method . it anaysises the consistency , numerical stability and error estimates of mollified solution . similar to tikhonov regularization , a discrepancy principle for selecting the mol - lifier parameter is proven and applications to numerical differentiation and numerical inversion of abel transform and also given 本文將介紹求解反問(wèn)題的一類重要的正則化策略?緩鎮(zhèn)法,并基于用gauss核構(gòu)造的緩鎮(zhèn)算子,分析了緩鎮(zhèn)解的相容性、數(shù)值穩(wěn)定性和誤差估計(jì),與tikhonov正則化類似,我們證明了決定緩鎮(zhèn)參數(shù)的偏差原理。
The prevailing approaches depend on costly time domain convolution , using the frequency domain network parameters such as s - parameter , y - parameter or abcd parameters to find analytic solution , and finding the time domain approximations by fft or even numerical inversion of laplace transform ( nitl ) if there are a large number of nonlinear devices in the network 目前盛行的方法是采用費(fèi)時(shí)的時(shí)域卷積法:首先運(yùn)用諸如s 、 y 、 abcd的頻域網(wǎng)絡(luò)參數(shù)求出頻域解析解,然后通過(guò)快速福利葉變換( fft )得出時(shí)域近似解,如果網(wǎng)絡(luò)中存在大規(guī)模的非線性設(shè)備,還需要采用數(shù)值逆拉普拉斯變換( nilt ) 。
Inversion analysis of measured displacements is used extensively in geotechnical engineering , structural engineering , information construction , and trauma diagnosis , etc . in this dissertation , parameters identification of original geostress and medium physical property in cavern , slope , tunnel and dam are taken as a cut - in point . macroscale inversion analysis of displacements and numerical solutions of inverse problems of mechanics are researched profoundly . scientific theories of multiscale problems are connected with numerical inversion approaches 本文以地下洞室、邊坡工程、隧道工程與大壩等領(lǐng)域的初始地應(yīng)力參數(shù)和介質(zhì)物性參數(shù)識(shí)別為切入點(diǎn),對(duì)宏觀尺度位移反演分析和力學(xué)反演問(wèn)題數(shù)值求解方法進(jìn)行了比較深入的研究,并將多尺度問(wèn)題科學(xué)理論和反演數(shù)值方法聯(lián)系起來(lái),初步探討了結(jié)構(gòu)性承載材料(如巖石、骨材料等)的多尺度力學(xué)模型及其反演方法。